Kagglers: another LHC Challenge!
I am glad of sharing some very motivating news: after a little bit more than year, Kaggle hosts a new CERN/LHC competition ! This time it comes from the tau disintegration into three muons. Again, the challenge consists of identifying the pattern from both real and simulated data to identify this rare phenomenon. The training data set consists of 49 distinct real-valued features plus the signal (i.e., background noise and the proper event). This time I am using Python with Scikit learn, Pandas and XGBoost (this latter one by far my favorite ensemble package; also available for R!) and I have to confess that is much easier when you do not have to program everything from scratch (as I usually do in C/C++ or Java), and that I have more time to think in new ways of solving the problem from a pure data scientist view. However, I really adore making use of use my own programs (I ended up 24th out of 1691 in the Forest Cover Type challenge using my own Extra Trees/Random Forest progra...